資訊中心 > 產品文獻集 > Blood Research (4)

  ✔本篇論文使用華聯產品:Human OneArray,Human miRNA OneArray  
 J Matern Fetal Neonatal Med. 2011, 24(8):1002-12. doi: 10.3109/14767058.2010.538454.
 Global maternal early pregnancy peripheral blood mRNA and miRNA expression profiles according to plasma 25-hydroxyvitamin D concentrations 
 Enquobahrie Da, Williams Ma, Qiu C, Siscovick Ds, Sorensen Tk.
  Abstract
We investigated associations of early pregnancy maternal vitamin D concentrations with differential gene expression and post-transcription regulation. Plasma 25-hydroxyvitamin D (25[OH]D) was measured among participants of a nested case-control study. Participants with low (<25.5 ng/ml) and high (?31.7 ng/ml) 25[OH]D were identified among controls. Peripheral blood messenger RNA (mRNA) (N?=?21) and microRNA (miRNA) (N?=?13) expression studies were conducted among participants with low and high 25[OH]D concentrations. Differential expression between low/high groups were evaluated using Student's t-test, fold change, and SAM comparisons. We further investigated functions and functional relationships of differentially expressed mRNAs and targets of differentially expressed miRNAs. Three hundred and five genes (299 upregulated and 6 downregulated) and 11 miRNAs (10 downregulated and 1 upregulated) were differentially expressed among participants with low 25[OH]D compared with those who had high 25[OH]D. Genes that participate in a wide range of cellular functions, including organ and system development (e.g. angiogenesis), inflammation and metabolic processes (e.g. carbohydrate/lipid metabolism), as well as miRNAs that target these genes were differentially expressed among women with low 25[OH]D compared with those with high 25[OH]D. Early pregnancy plasma 25[OH]D concentrations are associated with maternal peripheral blood gene expression and post-transcription regulation.
   

Topic Related Articles

  ✔本篇論文使用華聯產品:Mouse OneArray  
 Plos One. 2014 Oct 14. doi: 10.1371/journal.pone.0109198.
 Cellular Intrinsic Mechanism Affecting the Outcome of AML Treated with Ara-C in a Syngeneic Mouse Model
 
 
 Bin Yin, Wenjun Zhao, Lirong Wei, Dongming Tan, Guangsong Su, Yanwen Zheng, Chao He, Zhengwei J. Mao, Timothy P. Singleton
  Abstract
The mechanisms underlying acute myeloid leukemia (AML) treatment failure are not clear. Here, we established a mouse model of AML by syngeneictransplantation of BXH-2 derived myeloid leukemic cells and developed an efficacious Ara-C-based regimen for treatment of these mice. We proved that leukemic cell load was correlated with survival. We also demonstrated that the susceptibility of leukemia cells to Ara-C could significantly affect the survival. To examine the molecular alterations in cells with different sensitivity, genome-wide expression of the leukemic cells was profiled, revealing that overall 366 and 212 genes became upregulated or downregulated, respectively, in the resistant cells. Many of these genes are involved in the regulation of cell cycle, cellular proliferation, and apoptosis. Some of them were further validated by quantitative PCR. Interestingly, the Ara-Cresistant cells retained the sensitivity to ABT-737, an inhibitor of anti-apoptosis proteins, and treatment with ABT-737 prolonged the life span of mice engrafted with resistant cells. These results suggest that leukemic load and intrinsic cellular resistance can affect the outcome of AML treated withAra-C. Incorporation of apoptosis inhibitors, such as ABT-737, into traditional cytotoxic regimens merits consideration for the treatment of AML in a subset of patients with resistance to Ara-C. This work provided direct in vivo evidence that leukemic load and intrinsic cellular resistance can affect theoutcome of AML treated with Ara-C, suggesting that incorporation of apoptosis inhibitors into traditional cytotoxic regimens merits consideration for the treatment of AML in a subset of patients with resistance to Ara-C.
   

  ✔本篇論文使用華聯產品:Human OneArray  
 Lipids In Health And Disease. 2011, 65(5):339-44. doi: 10.1016/j.biopha.2011.04.013.
 Different gene expression profiles in normo- and dyslipidemic men after fish oil supplementation: results from a randomized controlled trial
 
 
 Simone Schmidt, Frank Stahl, Kai-oliver Mutz, Thomas Scheper, Andreas Hahn, And Jan Philipp Schuchardt
  Abstract
Epidemiological studies have suggested the benefits of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on cardiovascular health, but only limited data are available describing n-3 PUFA regulated pathways in humans. The aim of this study was to investigate the effects of n-3 PUFA administration on whole genome expression profiles in the blood of normo- and dyslipidemic subjects. Differentially expressed genes were detected after four hours, one week and twelve weeks of supplementation with either fish oil (FO) or corn oil in normo- and dyslipidemic men using whole genome microarrays. Independent of the oil, a significantly higher number of genes was regulated in dyslipidemic subjects compared to normolipidemic subjects. Pathway analyses discovered metabolisms dominantly affected by FO after twelve weeks of supplementation, including the lipid metabolism, immune system and cardiovascular diseases. Several pro-inflammatory genes, in particular, were down-regulated in dyslipidemic subjects, indicating the immune-modulatory and anti-inflammatory capability of FO and its bioactive FAs, eicosapentaenoic acid and docosahexaenoic acid. This is the first study showing significant differences in gene expression profiles between normo- and dyslipidemic men after FO supplementation. Further studies need to clarify the exact role of n-3 PUFAs in pathways and metabolisms which were identified as being regulated after FO supplementation in this study.
   

Product Related Articles

  ✔本篇論文使用華聯產品:Human OneArray,Human miRNA OneArray  
 Biomed Research International. 2014 July 1.
 Systematic expression profiling analysis identifies specific microRNA-gene interactions that may differentiate between active and latent tuberculosis infection
 
 
 Lawrence Shih-hsin Wu, Shih-wei Lee, Kai-yao Huang, Tzong-yi Lee, Paul Wei-che Hsu, Julia Tzu-ya Weng
  Abstract
Tuberculosis (TB) is the second most common cause of death from infectious diseases. About 90% of those infected are asymptomatic¡Xthe so-called latent TB infections (LTBI), with a 10% lifetime chance of progressing to active TB. In attempt to further understand the molecular pathogenesis of TB and develop efficient diagnostic biomarkers, several molecular studies have attempted to compare the gene and microRNA expression profiles between healthy controls versus active TB or LTBI patients. However, the results vary due to diverse genetic background, study designs, and the inherent complexity of the disease process. Thus, developing a sensitive and efficient method for the detection of LTBI is both crucial and challenging. For the present study, we performed a systematic analysis of the gene and microRNA profiles of healthy individuals versus those affected with TB or LTBI. Combined with a series of in silico analysis utilizing publicly available microRNA knowledge bases and published literature data, we have uncovered several microRNA-gene interactions that specifically target both the blood and lungs, presenting to be useful molecular signatures to help enhance the understanding of TB pathogenesis. Furthermore, some of these molecular interactions are novel, and may serve as potential biomarkers of TB and LTBI, facilitating the development for a more sensitive, efficient, and cost-effective diagnostic assay for TB and LTBI for the Taiwanese population.
   

  ✔本篇論文使用華聯產品:Human OneArray,Human miRNA OneArray  
 Evidence-based Complementary And Alternative Medicine. 2013 March 29.
 A Systems Biology Approach to Characterize Biomarkers for Blood Stasis Syndrome of Unstable Angina Patients by Integrating MicroRNA and Messenger RNA Expression Profiling
 
 
 Jie Wang, Gui Yu
  Abstract
Blood stasis syndrome (BSS) in Traditional Chinese medicine (TCM) was considered to the major type of syndrome in unstable angina (UA) patients, which was proven by the epidemiological investigation. This paper identified the systems biology-based microRNA (miRNA) and mRNA expression biomarkers for BSS of UA. The aim of this study was to compare miRNAs and mRNAs profiles of peripheral blood mononuclear cells (PBMCs) from BSS of UA patients and healthy controls through a systems biology approach. We identified 1081 mRNAs and 25 miRNAs differentially expressed between BSS of UA patients and healthy controls by microarrays. We used DAVID, miRTrail and the protein-protein interactions (PPI) method to explore the related pathways and networks of differentially expressed miRNAs and mRNAs. By combining the results of pathways and networks, we found that the upregulation of miR-146b-5p may induce the downregulation of CALR to attenuate inflammation and the upregulation of miR-199a-5p may induce the downregulation of TP53 to inhibit apoptosis in BSS of UA patients. The expression patterns of miR-146b-5p, miR-199a-5p, CALR and TP53 were confirmed by real-time quantitative polymerase chain reaction (qRT-PCR) in an independent validation cohort including BBS of UA, non-BBS of UA and healthy control. miR-146b-5p, miR-199a-5p, CALR and TP53 could be the biomarkers of BSS of UA patients. The systems biology-based miRNA and mRNA expression biomarkers for the BSS of UA may be helpful for the further stratification of UA patients when deciding on interventions or clinical trials.