資訊中心 > 產品文獻集 > Herbal Medicine (26)

  ✔本篇論文使用華聯產品:Mouse OneArray  
 Journal Of Agricultural And Food Chemistry. 2014, 62(36):8952-61. doi: 10.1021/jf5002099.
 A Novel Insulin Receptor-Binding Protein from Momordica charantia Enhances Glucose Uptake and Glucose Clearance in Vitro and in Vivo through Triggering Insulin Receptor Signaling Pathway 
 Chien-yun Hsiang, Hsin-yi Lo, Tin-yun Ho, Chia-cheng Li, Jaw-chyun Chen, Jau-jin Liu
  Abstract
Diabetes, a common metabolic disorder, is characterized by hyperglycemia. Insulin is the principal mediator of glucose homeostasis. In a previous study, we identified a trypsin inhibitor, named Momordica charantia insulin receptor (IR)-binding protein (mcIRBP) in this study, that might interact with IR. The physical and functional interactions between mcIRBP and IR were clearly analyzed in the present study. Photo-cross-linking coupled with mass spectrometry showed that three regions (17-21, 34-40, and 59-66 residues) located on mcIRBP physically interacted with leucine-rich repeat domain and cysteine-rich region of IR. IR-binding assay showed that the binding behavior of mcIRBP and insulin displayed a cooperative manner. After binding to IR, mcIRBP activated the kinase activity of IR by (5.87 ¡Ó 0.45)-fold, increased the amount of phospho-IR protein by (1.31 ¡Ó 0.03)-fold, affected phosphoinositide-3-kinase/Akt pathways, and consequently stimulated the uptake of glucose in 3T3-L1 cells by (1.36 ¡Ó 0.12)-fold. Intraperitoneal injection of 2.5 nmol/kg mcIRBP significantly decreased the blood glucose levels by 20.9 ¡Ó 3.2% and 10.8 ¡Ó 3.6% in normal and diabetic mice, respectively. Microarray analysis showed that mcIRBP affected genes involved in insulin signaling transduction pathway in mice. In conclusion, our findings suggest that mcIRBP is a novel IRBP that binds to sites different from the insulin-binding sites on IR and stimulates both theglucose uptake in cells and the glucose clearance in mice.
   

Topic Related Articles

  ✔本篇論文使用華聯產品:Human OneArray  
 Phytomedicine. 2015, 22(7-8):768-77. doi: 10.1016/j.phymed.2015.05.053.
 Glycyrrhizin, silymarin, and ursodeoxycholic acid regulate a common hepatoprotective pathway in HepG2 cells
 
 
 Chien-yun Hsiang, Li-jenlin, Shung-te Kao, Hsin-yi Lo, Shun-ting Chou, Tin-yunho
  Abstract
BACKGROUND: Glycyrrhizin, silymarin, and ursodeoxycholic acid are widely used hepatoprotectants for the treatment of liver disorders, such as hepatitis C virus infection, primary biliary cirrhosis, and hepatocellular carcinoma. PURPOSE: The gene expression profiles of HepG2 cells responsive to glycyrrhizin, silymarin, and ursodeoxycholic acid were analyzed in this study. METHODS: HepG2 cells were treated with 25 µM hepatoprotectants for 24 h. Gene expression profiles of hepatoprotectants-treated cells were analyzed by oligonucleotide microarray in triplicates. Nuclear factor-£eB (NF-£eB) activities were assessed by luciferase assay. RESULTS: Among a total of 30,968 genes, 252 genes were commonly regulated by glycyrrhizin, silymarin, and ursodeoxycholic acid. These compounds affected the expression of genes relevant various biological pathways, such as neurotransmission, and glucose and lipid metabolism. Genes involved in hepatocarcinogenesis, apoptosis, and anti-oxidative pathways were differentially regulated by all compounds. Moreover, interaction networks showed that NF-£eB might play a central role in the regulation of gene expression. Further analysis revealed that these hepatoprotectants inhibited NF-£eB activities in a dose-dependent manner. CONCLUSION: Our data suggested that glycyrrhizin, silymarin, and ursodeoxycholic acid regulated the expression of genes relevant to apoptosis and oxidative stress in HepG2 cells. Moreover, the regulation by these hepatoprotectants might be relevant to the suppression of NF-£eB activities.
   

  ✔本篇論文使用華聯產品:Human OneArray  
 Evidence-based Complementary And Alternative Medicine. 2015:425760. doi: 10.1155/2015/425760.
 Molecular Signatures in the Prevention of Radiation Damage by the Synergistic Effect of N-Acetyl Cysteine and Qingre Liyan Decoction, a Traditional Chinese Medicine, Using a 3-Dimensional Cell Culture Model of Oral Mucositis
 
 
 Lavanya Kondapalli, Cyrus Parsa, Hari Chandana Mulamalla, Robert Orlando, Doreen Pon, Ying Huang, Moses S. S. Chow, Maria P. Lambros
  Abstract
Qingre Liyan decoction (QYD), a Traditional Chinese medicine, and N-acetyl cysteine (NAC) have been used to prevent radiation induced mucositis. This work evaluates the protective mechanisms of QYD, NAC, and their combination (NAC-QYD) at the cellular and transcriptional level. A validated organotypic model of oral mucosal consisting of a three-dimensional (3D) cell tissue-culture of primary human keratinocytes exposed to X-ray irradiation was used. Six hours after the irradiation, the tissues were evaluated by hematoxylin and eosin (H and E) and a TUNEL assay to assess histopathology and apoptosis, respectively. Total RNA was extracted and used for microarray gene expression profiling. The tissue-cultures treated with NAC-QYD preserved their integrity and showed no apoptosis. Microarray results revealed that the NAC-QYD caused the upregulation of genes encoding metallothioneins, HMOX1, and other components of the Nrf2 pathway, which protects against oxidative stress. DNA repair genes (XCP, GADD45G, RAD9, and XRCC1), protective genes (EGFR and PPARD), and genes of the NF£eB pathway were upregulated. Finally, tissue-cultures treated prophylactically with NAC-QYD showed significant downregulation of apoptosis, cytokines and chemokines genes, and constrained damage-associated molecular patterns (DAMPs). NAC-QYD treatment involves the protective effect of Nrf2, NF£eB, and DNA repair factors.
   

Product Related Articles

  ✔本篇論文使用華聯產品:Mouse OneArray  
 International Journal Of Molecular Sciences. doi:10.3390/ijms17010098.
 Optimizing a Male Reproductive Aging Mouse Model by d-Galactose Injection
 
 
 
  Abstract
The d-galactose (d-gal)-injected animal model, which is typically established by administering consecutive subcutaneous d-gal injections to animals for approximately six or eight weeks, has been frequently used for aging research. In addition, this animal model has been demonstrated to accelerate aging in the brain, kidneys, liver and blood cells. However, studies on aging in male reproductive organs that have used this animal model remain few. Therefore, the current study aimed to optimize a model of male reproductive aging by administering d-gal injections to male mice and to determine the possible mechanism expediting senescence processes during spermatogenesis. In this study, C57Bl/6 mice were randomized into five groups (each containing 8–10 mice according to the daily intraperitoneal injection of vehicle control or 100 or 200 mg/kg dosages of d-gal for a period of six or eight weeks). First, mice subjected to d-gal injections for six or eight weeks demonstrated considerably decreased superoxide dismutase activity in the serum and testis lysates compared to those in the control group. The lipid peroxidation in testis also increased in the d-gal-injected groups. Furthermore, the d-gal-injected groups exhibited a decreased ratio of testis weight/body weight and sperm count compared to the control group. The percentages of both immotile sperm and abnormal sperm increased considerably in the d-gal-injected groups compared to those of the control group. To determine the genes influenced by the d-gal injection during murine spermatogenesis, a c-DNA microarray was conducted to compare testicular RNA samples between the treated groups and the control group. The d-gal-injected groups exhibited RNA transcripts of nine spermatogenesis-related genes (Cycl2, Hk1, Pltp, Utp3, Cabyr, Zpbp2, Speer2, Csnka2ip and Katnb1) that were up- or down-regulated by at least two-fold compared to the control group. Several of these genes are critical for forming sperm-head morphologies or maintaining nuclear integration (e.g., cylicin, basic protein of sperm head cytoskeleton 2 (Cylc2), casein kinase 2, alpha prime interacting protein (Csnka2ip) and katanin p80 (WD40-containing) subunit B1 (Katnb1)). These results indicate that d-gal-injected mice are suitable for investigating male reproductive aging.
   

  ✔本篇論文使用華聯產品:Mouse OneArray  
 Histochemistry And Cell Biology. doi: 10.1007/s00418-015-1348-9..
 Impact of diethylhexyl phthalate on gene expression and development of mammary glands of pregnant mouse.
 
 
 
  Abstract
The widely used diethylhexyl phthalate (DEHP) is a known endocrine disruptor that causes persistent alterations in the structure and function of female reproductive system, including ovaries, uterus and oviducts. To explore the molecular mechanism of the effect of DEHP on the development of mammary glands, we investigated the cell cycle, growth, proliferation and gene expression of mammary gland cells of pregnant mice exposed to DEHP. It was demonstrated, for the first time, that the mammary gland cells of pregnant mice treated with DEHP for 0.5–3.5 days post-coitum had increased proliferation, growth rate and number of cells in the G2/S phase. The expression of cell proliferation-related genes was significantly altered after short time and low-dose DEHP treatment of mammary gland cells in vivo and in vitro. These findings showed adverse effects of DEHP on mammary gland cells in pregnant mice.