資訊中心 > 產品文獻集 > Safety Assessment (22)

  ✔本篇論文使用華聯產品:Human miRNA OneArray  
 Biomed Research International. 2014 Sep 16.
 MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure 
 Kuei-fang Lee, Yi-cheng Chen, Paul Wei-che Hsu, Ingrid Y. Liu, Lawrence Shih-hsin Wu
  Abstract
Various biological effects are associated with radiation exposure. Irradiated cells may elevate the risk for genetic instability, mutation, and cancer under low levels of radiation exposure, in addition to being able to extend the postradiation side effects in normal tissues. Radiation-induced bystander effect (RIBE) is the focus of rigorous research as it may promote the development of cancer even at low radiation doses. Alterations in the DNA sequence could not explain these biological effects of radiation and it is thought that epigenetics factors may be involved. Indeed, some microRNAs (or miRNAs) have been found to correlate radiation-induced damages and may be potential biomarkers for the various biological effects caused by different levels of radiation exposure. However, the regulatory role that miRNA plays in this aspect remains elusive. In this study, we profiled the expression changes in miRNA under fractionated radiation exposure in human peripheral blood mononuclear cells. By utilizing publicly available microRNA knowledge bases and performing cross validations with our previous gene expression profiling under the same radiation condition, we identified various miRNA-gene interactions specific to different doses of radiation treatment, providing new insights for the molecular underpinnings of radiation injury.
   

Topic Related Articles

  ✔本篇論文使用華聯產品:Mouse OneArray  
 Molecular Medicine Reports. 2015, 11(2):887-95. doi: 10.3892/mmr.2014.2823.
 Biological effect of ketamine in urothelial cell lines and global gene expression analysis in the bladders of ketamine‑injected mice
 
 
 Cheng‑huang Shen, Shou‑tsung Wang, Ying‑ray Lee, Shiau‑yuan Liu, Yi‑zhen Li, Jiann‑der Wu, Yi‑ju Chen, Yi‑wen Liu
  Abstract
Ketamine is used clinically for anesthesia but is also abused as a recreational drug. Previously, it has been established that ketamine‑induced bladder interstitial cystitis is a common syndrome in ketamine‑abusing individuals. As the mechanisms underlying ketamine‑induced cystitis have yet to be revealed, the present study investigated the effect of ketamine on human urothelial cell lines and utilized a ketamine‑injected mouse model to identify ketamine‑induced changes in gene expression in mice bladders. In the in vitro bladder cell line assay, ketamine induced cytotoxicity in a dose‑ and time‑dependent manner. Ketamine arrested the cells in G1 phase and increased the sub‑G1 population, and also increased the barrier permeability of these cell lines. In the ketamine‑injected mouse model, ketamine did not change the body weight and bladder histology of the animals at the dose of 30 mg/kg/day for 60 days. Global gene expression analysis of the animals' bladders following data screening identified ten upregulated genes and 36 downregulated genes induced by ketamine. A total of 52% of keratin family genes were downregulated, particularly keratin 6a, 13 and 14, which was confirmed by polymerase chain reaction analysis. Keratin 14 protein, one of the 36 ketamine‑induced downregulated genes, was also reduced in the ketamine‑treated mouse bladder, as determined by immunohistochemical analysis. This suggested that cytotoxicity and keratin gene downregulation may have a critical role in ketamine‑induced cystitis.
   

  ✔本篇論文使用華聯產品:Human OneArray  
 Toxicology Research. 2015, 4, 365-375. doi: 10.1039/C4TX00181H.
 A gene signature for gold nanoparticle-exposed human cell lines
 
 
 Ruei-yue Liang, Hsin-fang Tu, Xiaotong Tan, Yu-shan Yeh, Pin Ju Chueh, Show-mei Chuang
  Abstract
There is currently a significant need for effective methods aimed at diagnosing and screening for nanoparticle exposure. We previously investigated the toxicity of three different particle sized gold nanoparticles (AuNPs) toward different types of mammalian cells and explored a related gene expression profile by cDNA microarray analysis of AuNP-exposed MRC-5 cells. In this study, we sought to further identify genes that could be used as biomarkers for AuNP exposure. We used cDNA microarray analysis to obtain comprehensive gene expression profiles from A549 cells exposed to three different-sized AuNPs. A total of 409 genes were commonly up-regulated by the tested AuNPs; of them, 71 had previously been analyzed to be up-regulated in MRC-5 cells. Among the top-ranked 30 of these 71 up-regulated genes, based on the magnitude of induction, nine genes were confirmed to be transcriptionally induced in A549 cells by all three tested AuNPs, as assessed by quantitative real-time polymerase chain reaction (qPCR). Among them, TSC22D3, TRIB3, PCK2 and DDIT4 were the most sensitive to the three AuNPs, and showed dose-dependent changes in several human cell lines. qPCR and immunoblotting analyses revealed that the same concentrations of micro-Au and nano-TiO2 failed to elicit up-regulation of these four genes at the mRNA and protein levels in any tested cell lines. Although the definition and practical implementation of specific biomarkers for nanoparticles is still in its infancy, our data suggest that it may be possible to define reliable biomarkers for the diagnosis of nanomaterial exposure.
   

Product Related Articles

  ✔本篇論文使用華聯產品:Human miRNA OneArray  
 Plos Genetics. PLOS Genetics doi:10.1371/journal.pgen.1005726.
 fMiRNA-192 and miRNA-204 Directly Suppress lncRNA HOTTIP and Interrupt GLS1-Mediated Glutaminolysis in Hepatocellular Carcinoma
 
 
 
  Abstract
Accumulated evidence demonstrated that long non-coding RNAs (lncRNAs) play a pivotal role in tumorigenesis. However, it is still largely unknown how these lncRNAs were regulated by small ncRNAs, such as microRNAs (miRNAs), at the post-transcriptional level. We here use lncRNA HOTTIP as an example to study how miRNAs impact lncRNAs expression and its biological significance in hepatocellular carcinoma (HCC). LncRNA HOTTIP is a vital oncogene in HCC, one of the deadliest cancers worldwide. In the current study, we identified miR-192 and miR-204 as two microRNAs (miRNAs) suppressing HOTTIP expression via the Argonaute 2 (AGO2)-mediated RNA interference (RNAi) pathway in HCC. Interaction between miR-192 or miR-204 and HOTTIP were further confirmed using dual luciferase reporter gene assays. Consistent with this notion, a significant negative correlation between these miRNAs and HOTTIP exists in HCC tissue specimens. Interestingly, the dysregulation of the three ncRNAs was associated with overall survival of HCC patients. In addition, the posttranscriptional silencing of HOTTIP by miR-192, miR-204 or HOTTIP siRNAs could significantly suppress viability of HCC cells. On the contrary, antagonizing endogenous miR-192 or miR-204 led to increased HOTTIP expression and stimulated cell proliferation. In vivo mouse xenograft model also support the tumor suppressor role of both miRNAs. Besides the known targets (multiple 5’ end HOX A genes, i.e. HOXA13), glutaminase (GLS1) was identified as a potential downstream target of the miR-192/-204-HOTTIP axis in HCC. Considering glutaminolysis as a crucial hallmark of cancer cells and significantly inhibited cell viability after silencingGLS1, we speculate that the miR-192/-204-HOTTIP axis may interrupt HCC glutaminolysis through GLS1 inhibition. These results elucidate that the miR-192/-204-HOTTIP axis might be an important molecular pathway during hepatic cell tumorigenesis. Our data in clinical HCC samples highlight miR-192, miR-204 and HOTTIP with prognostic and potentially therapeutic
   

  ✔本篇論文使用華聯產品:Human miRNA OneArray  
 Prostate. doi: 10.1002/pros.23068. Epub 2015 Aug 26..
 Hsa-miR-146a-5p modulates androgen-independent prostate cancer cells apoptosis by targeting ROCK1
 
 
 
  Abstract
Background MicroRNAs (miRNAs) have been demonstrated playing important roles in the procession of prostate cancer cells transformation from androgen-dependence to androgen-independence. Methods We conducted the miRNA microarray and realtime PCR analyses in both androgen-dependent (ADPC) and androgen-independent prostate cancer (AIPC) tissues. We also explored the role of hsa-miR-146a-5p (miR-146a) in MSKCC prostate cancer clinical database. Moreover, the impact of miR-146a on prostate cancer cells apoptosis were detected by Hoechst staining and fluorescence-activated cell sorter (FACS). Its target is predicted by DIANA LAB online database and the result was assumed by western blotting and luciferase assay. Results We demonstrated that miR-146a was down-regulated in AIPC tissues and cell lines compared to that in the ADPC tissues. In MSKCC data re-analyses, we found that miR-146a was underexpressed in metastatic prostate cancer tissues and those with Gleason score >8, moreover, low level of miR-146a represented a high biochemical relapse rate after radical prostatectomy. In the functional analyses, we transfected miR-146a mimics into CPRC cell lines and found miR-146a induced cells apoptosis. In mechanic analyses, we found that miR-146a inhibited the basal level of Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) expression by targeting its 3'UTR and an inverse correlation of expression between miR-146a and ROCK1 was observed. Moreover, caspase 3 activity was stimulated by miR-146a overexpression. Conclusion miR-146a has a critical role in the process of AIPC prostate cancer cells apoptosis through regulation of ROCK/Caspase 3 pathway. Targeting this pathway may be a promising therapeutic strategy for future personalized anti-cancer treatment.