產品資訊 > 小鼠&大鼠 miRNA 晶片 Mouse&Rat miRNA OneArray® v7

 
    小鼠與大鼠微小核醣核酸 (miRNA) 表達譜晶片 v7 版本,是以 Sanger miRBase (Release 21版本) 所公佈之 miRNA為偵測目標之產品,可達到小鼠以及大鼠之所有成熟  miRNA 序列 100 % 的覆蓋率。以自有的高速佈放技術進行晶片生產, 於 20166 月上市。

 
 
 
小鼠&大鼠 miRNA 晶片 v7 探針內容
  學名 Mus musculus Rattus norvegicus
  常用中文名稱 小鼠 大鼠
  常用英文名稱 Mouse Rat
  探針代表號 mmu rno
  miRNA 探針數 1,481 760
  所對應的成熟 miRNA 1,499 750
  MRmiOA v7 miRNA 探針總數 2,241
  miRNA 探針重複數 3
  控制探針數 148
  總探針數 6,871

    ※小鼠與大鼠有 410 個 miRNA 探針是共有的。


  基 因 探 針
小鼠&大鼠 miRNA 晶片 v7 是參考 Sanger miRBase 資料庫 release 21 的序列進行探針設計, 共計 2,180 個序列, 在探針設計的過程,依據各序列的特性,進行嚴格 Tm 值的把關及調整。 在每一晶片上,每一個 miRNA 序列具有 3 個重覆的探針。



  控 制 探 針

為確保晶片數據品質,華聯技術團隊經過一連串的測試及驗證,設計一系列的品質控制探針, 以監控完整的晶片實驗步驟,包含樣本 RNA 完整性、樣本 RNA 放大流程、螢光標記效率、晶片雜交、晶片掃描等。
 
 

使用MRmiOA文獻 ( 22 )

 Cellular and Molecular Biology Letters. DOI: 10.1515/cmble-2015-0034.
 Mechanical Strain Affects Some Microrna Profiles in Pre-Oeteoblasts 
 
  Abstract
MicroRNAs (miRNAs) are important regulators of cell proliferation, differentiation and function. Mechanical strain is an essential factor for osteoblast proliferation and differentiation. A previous study revealed that a physiological mechanical tensile strain of 2500 microstrain (με) at 0.5 Hz applied once a day for 1 h over 3 consecutive days promoted osteoblast differentiation. However, the mechanoresponsive miRNAs of these osteoblasts were not identified. In this study, we applied the same mechanical tensile strain to in vitro cultivated mouse MC3T3-E1 pre-osteoblasts and identified the mechanoresponsive miRNAs. Using miRNA microarray and qRT-PCR assays, the expression patterns of miRNAs were evaluated and 5 of them were found to be significantly different between the mechanical loading group and the control group: miR-3077-5p, 3090-5p and 3103-5p were significantly upregulated and miR-466i-3p and 466h-3p were downregulated. Bioinformatics analysis revealed possible target genes for these differentially expressed miRNAs. Some target genes correlated with osteoblast differentiation. These findings indicated that the mechanical strain changed the expression levels of these miRNAs. This might be a potential regulator of osteoblast differentiation and responses to mechanical strain.
   

 BMC GENOMICS. doi: 10.1186/s12864-015-1896-3..
 Weight-reduction through a low-fat diet causes differential expression of circulating microRNAs in obese C57BL/6 mice
 
 
 
  Abstract
Background To examine the circulating microRNA (miRNA) expression profile in a mouse model of diet-induced obesity (DIO) with subsequent weight reduction achieved via low-fat diet (LFD) feeding. Results Eighteen C57BL/6NCrl male mice were divided into three subgroups: (1) control, mice were fed a standard AIN-76A (fat: 11.5 kcal %) diet for 12 weeks; (2) DIO, mice were fed a 58 kcal % high-fat diet (HFD) for 12 weeks; and (3) DIO + LFD, mice were fed a HFD for 8 weeks to induce obesity and then switched to a 10.5 kcal % LFD for 4 weeks. A switch to LFD feeding led to decreases in body weight, adiposity, and blood glucose levels in DIO mice. Microarray analysis of miRNA using The Mouse & Rat miRNA OneArray® v4 system revealed significant alterations in the expression of miRNAs in DIO and DIO + LFD mice. Notably, 23 circulating miRNAs (mmu-miR-16, mmu-let-7i, mmu-miR-26a, mmu-miR-17, mmu-miR-107, mmu-miR-195, mmu-miR-20a, mmu-miR-25, mmu-miR-15b, mmu-miR-15a, mmu-let-7b, mmu-let-7a, mmu-let-7c, mmu-miR-103, mmu-let-7f, mmu-miR-106a, mmu-miR-106b, mmu-miR-93, mmu-miR-23b, mmu-miR-21, mmu-miR-30b, mmu-miR-221, and mmu-miR-19b) were significantly downregulated in DIO mice but upregulated in DIO + LFD mice. Target prediction and function annotation of associated genes revealed that these genes were predominantly involved in metabolic, insulin signaling, and adipocytokine signaling pathways that directly link the pathophysiological changes associated with obesity and weight reduction. Conclusions These results imply that obesity-related reductions in the expression of circulating miRNAs could be reversed through changes in metabolism associated with weight reduction achieved through LFD feeding.
   

 RNA Biology. 2015, 12(3):343-53. doi: 10.1080/15476286.2015.1017205.
 miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway
 
 
 Chenyang Zhao, Weijia Sun, Pengfei Zhang, Shukuan Ling, Yuheng Li, Dingsheng Zhao, Jiang Peng, Aiyuan Wang, Qi Li, Jinping Song, Cheng Wang, Xiaolong Xu, Zi Xu, Guohui Zhong, Bingxing Han, Yan-Zhong Chang, Yingxian Li
  Abstract
microRNA is necessary for osteoclast differentiation, function and survival. It has been reported that miR-199/214 cluster plays important roles in vertebrate skeletal development and miR-214 inhibits osteoblast function by targeting ATF4. Here, we show that miR-214 is up-regulated during osteoclastogenesis from bone marrow monocytes (BMMs) with macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-£eB ligand (RANKL) induction, which indicates that miR-214 plays a critical role in osteoclast differentiation. Overexpression of miR-214 in BMMs promotes osteoclastogenesis, whereas inhibition of miR-214 attenuates it. We further find that miR-214 functions through PI3K/Akt pathway by targeting phosphatase and tensin homolog (Pten). In vivo, osteoclast specific miR-214 transgenic mice (OC-TG214) exhibit down-regulated Pten levels, increased osteoclast activity, and reduced bone mineral density. These results reveal a crucial role of miR-214 in the differentiation of osteoclasts, which will provide a potential therapeutic target for osteoporosis.
   

 Molecular Pharmaceutics. 2015 Jul 9. DOI: 10.1021/acs.molpharmaceut.5b00329.
 Exploring microRNA expression profiles related to the mTOR signaling pathway in mouse embryonic fibroblast cells treated with polyethylenimine
 
 
 Chia-Wei Lin, Jung-Hua Steven Kuo, Ming-Shiou Jan
  Abstract
Although the toxicology of poly(ethylenimine) (PEI) in gene expression levels has been previously investigated, little is known about the effects of PEI on the expression of microRNAs (miRNAs) that regulate gene expression at the post-transcriptional level. In this study, we explored miRNA expression profiles related to cell death mechanisms in mouse embryonic fibroblast (MEF) cells treated with PEI by applying microarray analysis. Based on the analysis of the mTOR signaling pathway, three upregulated miRNAs (mmu-miR-3090-5p, mmu-miR-346-3p, and mmu-miR-494-3p) were verified in MEF cells treated with PEI at 24 h using real-time quantitative reverse transcriptase-polymerase chain reaction. We further demonstrated that these three upregulated miRNAs resulted in the decrease of gene and protein expressions of the target gene growth factor Igf1 in MEF cells treated with PEI or transfected with three upregulated miRNA mimics. However, these three upregulated miRNAs are not all cell-specific. Finally, we demonstrated that the mTOR signaling pathway is inhibited by autophagy induction and that the cell viability decreases in MEF cells treated with PEI or transfected with these three miRNA mimics. Collectively, our data suggested that PEI may affect the regulation of miRNAs in target cells.
   

 BioMed Research International. 2015:410721. doi: 10.1155/2015/410721.
 TLR4/NF-£eB-Responsive MicroRNAs and Their Potential Target Genes: A Mouse Model of Skeletal Muscle Ischemia-Reperfusion Injury
 
 
 Johnson Chia-Shen Yang, Shao-ChunWu, Cheng-Shyuan Rau, Yi-Chun Chen, Tsu-Hsiang Lu, Yi-ChanWu, Siou-Ling Tzeng, Chia-JungWu, Ching-Hua Hsieh
  Abstract
Background. The aim of this study was to profile TLR4/NF-£eB-responsive microRNAs (miRNAs) and their potential target genes in the skeletal muscles of mice following ischemia-reperfusion injury. Methods. Thigh skeletal muscles of C57BL/6, Tlr4−/−, and NF-£eB−/− mice isolated based on femoral artery perfusion were subjected to ischemia for 2 h and reperfusion for 0 h, 4 h, 1 d, and 7 d. The muscle specimens were analyzed with miRNA arrays. Immunoprecipitation with an argonaute 2- (Ago2-) specific monoclonal antibody followed by whole genome microarray was performed to identify mRNA associated with the RNA-silencing machinery. The potential targets of each upregulated miRNA were identified by combined analysis involving the bioinformatics algorithm miRanda and whole genome expression. Results. Three TLR4/NF-£eB-responsive miRNAs (miR-15a, miR-744, and miR-1196) were significantly upregulated in the muscles following ischemia-reperfusion injury. The combined in silico and whole genome microarray approaches identified 5, 4, and 20 potential target genes for miR-15a, miR-744, and miR-1196, respectively. Among the 3 genes (Zbed4, Lrsam1, and Ddx21) regulated by at least 2 of the 3 upregulated miRNAs, Lrsam1 and Ddx21 are known to be associated with the innate immunity pathway. Conclusions. This study profiled TLR4/NF-£eB-responsive miRNAs and their potential target genes in mouse skeletal muscle subjected to ischemia-reperfusion injury.
   

 Journal of Agricultural and Food Chemistry. 2015, 63(16):4148-59. doi: 10.1021/acs.jafc.5b01005.
 Up-Regulation of miR-34a Expression in Response to the Luteolin-Induced Neurite Outgrowth of PC12 Cells
 
 
 Pei-Yi Chen, Ming-Jiuan Wu, Heng-Yuan Chang, Mi-Hsueh Tai, Chi-Tang Ho, Jui-Hung Yen
  Abstract
Luteolin (3',4',5,7-tetrahydroxyflavone), a flavonoid found in several vegetables and fruits, has been reported to possess neurotrophic activities that are associated with its capacity to promote neuronal survival and differentiation. In the present study, we report for the first time a genomewide screen for microRNAs (miRNAs) regulated during the luteolin-mediated neurite outgrowth of PC12 cells. We found that after luteolin treatment, the abundance of 16 miRNAs was markedly up-regulated and that of 3 miRNAs was down-regulated in PC12 cells. The induction of miR-34a by luteolin was the most pronounced among these differentially expressed miRNAs. The correlation between miR-34a down-regulation and decreased luteolin-mediated neurite outgrowth may indicate a mechanism by which miR-34a may act as a modulator of neuronal differentiation. Furthermore, we found that luteolin enhanced the phosphorylation of p53 at Ser15, which was associated with the promotion of miR-34a transcription and neurite outgrowth. Moreover, the level of sirtuin 1 (SIRT1), a known miR-34a target, was reduced during luteolin-induced neurite outgrowth. In turn, the level of acetylated p53, a substrate of SIRT1, was correspondingly increased in luteolin-treated PC12 cells. In addition to p53 activation, we further identified that luteolin-induced miR-34a transcription and neurite outgrowth involved the activation of the JNK and p38 MAPK pathways. However, the inhibition of JNK and p38 MAPK activation did not block luteolin-induced p53 activation in PC12 cells. Our findings suggested that the activation of both p53-dependent and p53-independent miR-34a/SIRT1 pathways plays a critical role in the mechanisms underlying luteolin-induced neuritogenesis.
   

 Environmental Toxicology. 2015, 30(6):712-23. doi: 10.1002/tox.21949.
 Prenatal and neonatal exposure to perfluorooctane sulfonic acid results in aberrant changes in miRNA expression profile and levels in developing rat livers
 
 
 Fan Wang, Yihe Jin, Faqi Wang, Junsheng Ma, Wei Liu
  Abstract
Perfluorooctane sulfonate (PFOS) is an animal carcinogen. However, the underlying mechanism in cancer initiation is still largely unknown. Recently identified microRNAs (miRNAs) may play an important role in toxicant exposure and in the process of toxicant-induced tumorigenesis. We used PFOS to investigate PFOS-induced changes in miRNA expression in developing rat liver and the potential mechanism of PFOS-induced toxic action. Dams received 3.2 mg/kg PFOS in their feed from gestational day 1 (GD1) to postnatal day 7 (PND 7). Pups then had free access to treated feed until PND 7. We isolated RNAs from liver tissues on PND 1 and 7 and analyzed the expression profiles of 387 known rat miRNAs using microarray technology. PFOS exposure induced significant changes in miRNA expression profiles. Forty-six miRNAs had significant expression alterations on PND 1, nine miRNAs on PND 7. Specifically, expression of four miRNAs was up-regulated on PND 7 but down-regulated on PND1 (p < 0.05). Many aberrantly expressed miRNAs were related to various cancers. We found oncogenic and tumor-suppressing miRNAs, which included miR-19b, miR-21*, miR-17-3p, miR-125a-3p, miR-16, miR-26a, miR-1, miR-200c, and miR-451. In addition, four miRNAs were simultaneous significantly expressed on both PND 1 and 7. Functional Annotation analysis of the predicted transcript targets revealed that PFOS exposure potentially alters pathways associated with different cancers (cancer, melanoma, pancreatic cancer, colorectal cancer, and glioma), biological processes which include positive regulation of apoptosis and cell proliferation. Results showed PFOS exposure altered the expression of a suite of miRNAs.
   

 BioMed Research International. 2014 Oct 13.
 TLR4/NF-𝜅B-Responsive MicroRNAs and Their Potential Target Genes: A Mouse Model of Skeletal Muscle Ischemia-Reperfusion Injury
 
 
 Johnson Chia-Shen Yang, Shao-Chun Wu, Cheng-Shyuan Rau, Yi-Chun Chen, Tsu-Hsiang Lu, Yi-Chan Wu, Siou-Ling Tzeng, Chia-Jung Wu, Ching-Hua Hsieh
  Abstract
Background. The aim of this study was to profile TLR4/NF-£eB-responsive microRNAs (miRNAs) and their potential target genes in the skeletal muscles of mice following ischemia-reperfusion injury. Methods. Thigh skeletal muscles of C57BL/6, Tlr4−/−, and NF-£eB−/− mice isolated based on femoral artery perfusion were subjected to ischemia for 2 h and reperfusion for 0 h, 4 h, 1 d, and 7 d. The muscle specimens were analyzed with miRNA arrays. Immunoprecipitation with an argonaute 2- (Ago2-) specific monoclonal antibody followed by whole genome microarray was performed to identify mRNA associated with the RNA-silencing machinery. The potential targets of each upregulated miRNA were identified by combined analysis involving the bioinformatics algorithm miRanda and whole genome expression. Results. Three TLR4/NF-£eB-responsive miRNAs (miR-15a, miR-744, and miR-1196) were significantly upregulated in the muscles following ischemia-reperfusion injury. The combined in silico and whole genome microarray approaches identified 5, 4, and 20 potential target genes for miR-15a, miR-744, and miR-1196, respectively. Among the 3 genes (Zbed4, Lrsam1, and Ddx21) regulated by at least 2 of the 3 upregulated miRNAs, Lrsam1 and Ddx21 are known to be associated with the innate immunity pathway. Conclusions. This study profiled TLR4/NF-£eB-responsive miRNAs and their potential target genes in mouse skeletal muscle subjected to ischemia-reperfusion injury.
   

 Cell Death & Disease. 2014 Oct 2. doi: 10.1038/cddis.2014.407.
 MicroRNA-207 enhances radiation-induced apoptosis by directly targeting Akt3 in cochlea hair cells
 
 
 Y-w Yuan, P-x Tan, S-s Du, C Ren, Q-w Yao, R Zheng, R Li
  Abstract
MicroRNAs (miRNAs) have important roles in various types of cellular biological processes. Our study aimed to determine whether miRNAs function in the regulation of ionizing radiation (IR)-induced cell death in auditory cells and to determine how they affect the cellular response to IR. Microarray and qRT-PCR were performed to identify and confirm the differential expression of miRNAs in the cochlea hair cell line HEI-OC1 and in vivo after IR. Upregulation or downregulation of miRNAs using miRNA mimics or inhibitor were detected to characterize the biological effects of the indicated miRNAs. Bioinformatic analyses, luciferase reporter assays and mRNA knockdown were performed to identify a miRNA target gene. We determined that miR-207 was significantly upregulated after IR. MiR-207 enhances IR-induced apoptosis and DNA damage in HEI-OC1 cells. Furthermore, Akt3 was confirmed to be a direct target of miR-207. Downregulation of Akt3 mimics the effects of miR-207. MiR-207 enhances IR-induced apoptosis by directly targeting Akt3 and anti-miR-207 may have a potential role in protecting cochlea hair cells from IR.
   

 Molecular Nutrition & Food Research. 2014 May 19. doi: 10.1002/mnfr.201300729.
 Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles
 
 
 Jingyao Mu, Xiaoying Zhuang, Qilong Wang, Hong Jiang, Zhong-Bin Deng, BaomeiWang, Lifeng Zhang, Sham Kakar, Yan Jun, Donald Miller, Huang-Ge Zhang
  Abstract
SCOPE: Exosomes, small vesicles participating in intercellular communication, have been extensively studied recently; however, the role of edibleplant derived exosomes in interspecies communication has not been investigated. Here, we investigate the biological effects of edible plant derivedexosome-like nanoparticles (EPDENs) on mammalian cells. METHODS AND RESULTS: In this study, exosome-like nanoparticles from four edible plants were isolated and characterized. We show that these EPDENs contain proteins, lipids, and microRNA. EPDENs are taken up by intestinal macrophages and stem cells. The results generated from EPDEN-transfected macrophages indicate that ginger EPDENs preferentially induce the expression of the antioxidation gene, heme oxygenase-1 and the anti-inflammatory cytokine, IL-10; whereas grapefruit, ginger, and carrot EPDENs promote activation of nuclear factor like (erythroid-derived 2). Furthermore, analysis of the intestines of canonical Wnt-reporter mice, i.e. B6.Cg-Tg(BAT-lacZ)3Picc/J mice, revealed that the numbers of £]-galactosidase+ (£]-Gal) intestinal crypts are increased, suggesting that EPDEN treatment of mice leads to Wnt-mediated activation of the TCF4 transcription machinery in the crypts. CONCLUSION: The data suggest a role for EPDEN-mediated interspecies communication by inducing expression of genes for anti-inflammation cytokines, antioxidation, and activation of Wnt signaling, which are crucial for maintaining intestinal homeostasis.
   

 Molecular and Cellular Biology. 2014 Apr 14.
 KSRP and MiR-145 Are Negative Regulators of Lipolysis in White Adipose Tissue
 
 
 Yi-Yu Lin, Chu-Fang Chou, Matteo Giovarelli, Paola Briata, Roberto Gherzi, Ching-Yi Chen
  Abstract
White adipose tissue (WAT) releases fatty acids from stored triacylglycerol (TAG) for energy source. Here, we report that targeted deletion of KH-type splicing regulatory protein (KSRP), an RNA-binding protein that regulates gene expression at multiple levels, enhances lipolysis in epididymal WAT (eWAT) due to up-regulation of genes promoting lipolytic activity. Expression of miR-145 is decreased due to impaired pri-miR-145 processing inKsrp-/- eWAT. We show that miR-145 directly targets and represses Foxo1 and Cgi58, activators of lipolytic activity, and forced expression of miR-145 attenuates lipolysis. This study reveals a novel in vivo function of KSRP in controlling adipose lipolysis through post-transcriptional regulation ofmiR-145 expression.
   

 Molecular BioSystems. 2014 Jan 14. doi: 10.1039/C3MB70564A .
 An increased ratio of serum miR-21 to miR-181a levels is associated with the early pathogenic process of chronic obstructive pulmonary disease in asymptomatic heavy smokers
 
 
 Lihua Xie, Minghua Wu, Hua Lin, Chun Liu, Honghui Yang, Juan Zhan, Shenghua Sun
  Abstract
Heavy smoking is associated with the development of chronic obstructive pulmonary disease (COPD). However, there is no valuable biomarker for evaluating COPD development in heavy smokers because they are usually asymptomatic. This study is aimed at evaluating whether the levels of serum miRNAs can serve as biomarkers for predicting the occurrence of COPD. A rat model of emphysema was induced by enforced smoking, and the dynamic miRNAs expression profile at different stages of emphysema with varying periods of smoking were analyzed by microarray and quantitative real-time polymerase chain reaction (qRT-PCR). The differentially expressing miRNAs were analyzed using Gene Ontology and the KEGG PATHWAY database. The levels of three serum candidate miRNAs were measured by qRT-PCR in 41 healthy controls (HC), 40 asymptomatic heavy smokers, and 49 COPD patients. Following smoking for varying periods, different severities of lung emphysema were observed in different groups of rats, accompanied by altered levels of some serum miRNAs associated with regulating some pathways. Furthermore, the levels of miR-21 were significantly higher in the COPD patients and asymptomatic heavy smokers than in the HC (P < 0.001), while the levels of miR-181a were significantly lower in the COPD patients and asymptomatic heavy smokers than in the HC (P < 0.001). Accordingly, the levels of serum miR-21 and miR-181a as well as their ratios had a high sensitivity (0.854) and specificity (0.850) for evaluating the development of COPD. Our data suggest that the levels of serum miR-21 and miR-181a may be valuable for evaluating the development of COPD in heavy smokers.
   

 Environmental Toxicology. 2014 Jan 13. doi: 10.1002/tox.21949.
 Prenatal and neonatal exposure to perfluorooctane sulfonic acid results in aberrant changes in miRNA expression profile and levels in developing rat livers
 
 
 Fan Wang, Yihe Jin, Faqi Wang, Junsheng Ma, Wei Liu
  Abstract
Perfluorooctane sulfonate (PFOS) is an animal carcinogen. However, the underlying mechanism in cancer initiation is still largely unknown. Recently identified microRNAs (miRNAs) may play an important role in toxicant exposure and in the process of toxicant-induced tumorigenesis. We used PFOS to investigate PFOS-induced changes in miRNA expression in developing rat liver and the potential mechanism of PFOS-induced toxic action. Dams received 3.2 mg/kg PFOS in their feed from gestational day 1 (GD1) to postnatal day 7 (PND 7). Pups then had free access to treated feed until PND 7. We isolated RNAs from liver tissues on PND 1 and 7 and analyzed the expression profiles of 387 known rat miRNAs using microarray technology. PFOS exposure induced significant changes in miRNA expression profiles. Forty-six miRNAs had significant expression alterations on PND 1, nine miRNAs on PND 7. Specifically, expression of four miRNAs was up-regulated on PND 7 but down-regulated on PND1 (p < 0.05). Many aberrantly expressed miRNAs were related to various cancers. We found oncogenic and tumor-suppressing miRNAs, which included miR-19b, miR-21*, miR-17-3p, miR-125a-3p, miR-16, miR-26a, miR-1, miR-200c, and miR-451. In addition, four miRNAs were simultaneous significantly expressed on both PND 1 and 7. Functional Annotation analysis of the predicted transcript targets revealed that PFOS exposure potentially alters pathways associated with different cancers (cancer, melanoma, pancreatic cancer, colorectal cancer, and glioma), biological processes which include positive regulation of apoptosis and cell proliferation. Results showed PFOS exposure altered the expression of a suite of miRNAs.
   

 PLOS ONE. 2013, 8(10): e77936. doi:10.1371/journal.pone.0077936.
 Profiling Circulating MicroRNA Expression in Experimental Sepsis Using Cecal Ligation and Puncture
 
 
 Shao-Chun Wu, Johnson Chia-Shen Yang, Cheng-Shyuan Rau, Yi-Chun Chen, Tsu-Hsiang Lu, Ming-Wei Lin, Siou-Ling Tzeng, Yi-Chan Wu, Chia-Jung Wu, Ching-Hua Hsieh
  Abstract
The levels of circulating microRNAs (miRNAs) in mice with experimental sepsis induced by cecal ligation and puncture (CLP) were determined using whole blood samples obtained from C57BL/6 mice at 4, 8, and 24 h after CLP; miRNA expression analysis was performed in these samples using an miRNA array. Microarray analysis revealed upregulation of 10 miRNA targets (miR-16, miR-17, miR-20a, miR-20b, miR-26a, miR-26b, miR-106a, miR-106b, miR-195, and miR-451). The expression of these miRNA targets in the whole blood, serum, and white blood cells (WBCs) of CLP mice was quantified using quantitative real-time PCR; these values were compared to those in sham-operated C57BL/6 mice, and the results indicated that these miRNA targets were significantly up-regulated in the whole blood and serum but not in the WBCs. In addition, the levels of these 10 miRNA targets in the serum of Tlr2−/−, Tlr4−/−, and NF-£eB−/− mice at 8 h after CLP did not decrease significantly., which indicated that the transcription of these miRNAs was not directly mediated by the TLR2/NF-£eB or TLR4/NF-£eB pathway, and pathways induced by exposure to the gram-positive or gram-negative bacteria. Immunoprecipitation with the Argonaute 2 ribonucleoprotein complex revealed significantly increased expression of the 10 miRNA targets in the serum of mice after CLP, and the levels of 6 (miR-16, miR-17, miR-20a, miR-20b, miR-26a, and miR-26b) of these 10 miRNA targets increased significantly in exosomes isolated using ExoQuick precipitation solution. In this study, we identified circulating miRNAs that were up-regulated after CLP and determined the increase in the levels of these miRNAs, and our results suggest that circulating Ago2 complexes and exosomes may be responsible for the stability of miRNAs in the serum.
   

 Journal of Biomedical Science. 2013, 20(1):64.
 Profiling circulating microRNA expression in a mouse model of nerve allotransplantation
 
 
 Cheng-Shyuan Rau, Johnson Chia-Shen Yang, Shao-Chun Wu, Yi-Chun Chen, Tsu-Hsiang Lu, Ming-Wei Lin, Yi-Chan Wu, Siou-Ling Tzeng, Chia-Jung Wu, Ching-Hua Hsieh
  Abstract
Background: The lack of noninvasive biomarkers of rejection remains a challenge in the accurate monitoring of deeply buried nerve allografts and precludes optimization of therapeutic intervention. This study aimed to establish the expression profile of circulating microRNAs (miRNAs) during nerve allotransplantation with or without immunosuppression. Results: Balb/c mice were randomized into 3 experimental groups, that is, (1) untreated isograft (Balb/c¡÷Balb/c), (2) untreated allograft (C57BL/6¡÷Balb/c), and (3) allograft (C57BL/6¡÷Balb/c) with FK506 immunosuppression. A 1-cm Balb/c or C57BL/6 donor sciatic nerve graft was transplanted into sciatic nerve gaps created in recipient mice. At 1, 3, 7, 10, and 14 d after nerve transplantation, nerve grafts, whole blood, and sera were obtained for miRNA expression analysis with an miRNA array and subsequent validation with quantitative real-time PCR (qRT-PCR). Three circulating miRNAs (miR-320, miR-762, and miR-423-5p) were identified in the whole blood and serum of the mice receiving an allograft with FK506 immunosuppression, within 2 weeks after nerve allotransplantation. However, these 3 circulating miRNAs were not expressed in the nerve grafts. The expression of all these 3 upregulated circulating miRNAs significantly decreased at 2, 4, and 6 d after discontinuation of FK506 immunosuppression. In the nerve graft, miR-125-3b and miR-672 were significantly upregulated in the mice that received an allograft with FK506 only at 7 d after nerve allotransplantation. Conclusions: We identified the circulating miR-320, miR-762, and miR-423-5p as potential biomarkers for monitoring the immunosuppression status of the nerve allograft. However, further research is required to investigate the mechanism behind the dysregulation of these markers and to evaluate their prognostic value in nerve allotransplantation.
   

 Journal of Biomedical Science. 2013, 20(1):2. doi:10.1186/1423-0127-20-2.
 Circulating microRNA signatures in mice exposed to lipoteichoic acid
 
 
 Ching-Hua Hsieh, Johnson Chia-Shen Yang, Jonathan Chris Jeng, Yi-Chun Chen, Tsu-Hsiang Lu, Siou-Ling Tzeng, Yi-Chan Wu, Chia-Jung Wu, Cheng-Shyuan Rau
  Abstract
BACKGROUND: Previously, we had identified a specific whole blood¡Vderived microRNAs (miRNAs) signature in mice following in vivo injection of lipopolysaccharide (LPS) originated from Gram-negative bacteria. This study was designed to profile the circulating miRNAs expression in mice exposed to lipoteichoic acid (LTA) which is a major component of the wall of Gram-positive bacteria. RESULTS: C57BL/6 mice received intraperitoneal injections of 100 £gg of LTA originated from Bacillus subtilis, Streptococcus faecalis, and Staphylococcus aureus were killed 6 h and the whole blood samples were obtained for miRNA expression analysis using a miRNA array (Phalanx miRNA OneArray 1.0). Up-regulated expression of miRNA targets in the whole blood, serum and white blood cells (WBCs) of C57BL/6 and Tlr2−/− mice upon LTA treatment in 10, 100, or 1000 ug concentrations was quantified at indicated time (2, 6, 24, and 72 h) using real-time RT-PCR and compared with that in the serum of C57BL/6 mice injected with 100 ug of LPS. A significant increase of 4 miRNAs (miR-451, miR-668, miR-1902, and miR-1904) was observed in the whole blood and the serum in a dose- and time-dependent fashion following LTA injection. Induction of miRNA occurred in the serum after 2 h and persisted for at least 6 h. No increased expression of these 4 miRNAs was found in the WBCs. Higher but not significant expression level of these 4 miRNAs were observed following LTA treatment in the serum of Tlr2−/−against that of C57BL6 mice. In contrast, LPS exposure induced moderate expression of miR-451 but not of the other 3 miRNA targets. CONCLUSIONS: We identified a specific circulating miRNA signature in mice exposed to LTA. That expression profile is different from those of mice exposed to LPS. Those circulating miRNAs induced by LTA or LPS treatment may serve as promising biomarkers for the differentiation between exposures to Gram-positive or Gram-negative bacteria.
   

 Environmental Toxicology. 2012 Jul 30. DOI: 10.1002/tox.21795.
 Modulation of microRNA expression by volatile organic compounds in mouse lung
 
 
 Fan Wang, Chonglei Li, Wei Liu, Yihe Jin
  Abstract
Volatile organic compounds (VOCs) are one of main pollutants indoors. Exposure to VOCs is associated with cancer, asthma disease, and multiple chemical allergies. Despite the adverse health effects of VOCs, the molecular mechanisms underlying VOCs-induced disease remain largely unknown. MicroRNAs (miRNAs), as key post-transcriptional regulators of gene expression, may influence cellular disease state. To investigate whether lung miRNA expression profiles in mice are modified by VOCs mixture exposure, 44 male Kunming mice were exposed in 4 similar static chambers, 0 (control) and 3 different doses of VOCs mixture (groups 1¡V3). The concentrations of VOCs mixture were as follows: formaldehyde, benzene, toluene, and xylene 3.0 + 3.3 + 6.0 + 6.0 mg/m3, 5.0 + 5.5 + 10.0 + 10.0 mg/m3, 10.0 + 11.0 + 20.0 + 20.0 mg/m3, respectively, which corresponded to 30, 50, and 100 times of indoor air quality standard in China, after exposure to 2 weeks (2 h/day, 5 days/week). Small RNAs in lung and protein isolated from bronchoalveolar lavage fluid (BALF) were collected and analyzed for miRNA expression using microarray analysis and for interleukin-8 (IL-8) protein levels by enzyme-linked immunosorbent assay, respectively. VOCs exposure altered the miRNA expression profiles in lung in mice. Specifically, 69 miRNAs were significantly differentially expressed in VOCs-exposed samples versus controls. Functional annotation analysis of the predicted miRNA transcript targets revealed that VOCs exposure potentially alters signaling pathways associated with cancer, chemokine signaling, Wnt signaling, neuroactive ligand-receptor interaction, and cell adhesion molecules. IL-8 isolated from BALF and nitric oxide synthase of lung increased significantly, whereas GSH of lung decreased significantly in mice exposed to VOCs. These results indicate that inhalation of VOCs alters miRNA patterns that regulate gene expression, potentially leading to the initiation of cancer and inflammatory diseases.
   

 Journal of Biomedical Science. 2012, 19:69. doi: 10.1186/1423-0127-19-69.
 Whole blood-derived microRNA signatures in mice exposed to lipopolysaccharides
 
 
 Ching-Hua Hsieh, Cheng-Shyuan Rau, Jonathan Chris Jeng, Yi-Chun Chen, Tsu-Hsiang Lu, Chia-Jung Wu, Yi-Chan Wu, Siou-Ling Tzeng, Johnson Chia-Shen Yang
  Abstract
Lipopolysaccharide (LPS) is recognized as the most potent microbial mediator presaging the threat of invasion of Gram-negative bacteria that implicated in the pathogenesis of sepsis and septic shock. This study was designed to examine the microRNA (miRNA) expression in whole blood from mice injected with intraperitoneal LPS. C57BL/6 mice received intraperitoneal injections of varying concentrations (range, 10¡V1000 £gg) of LPS from different bacteria, including Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Salmonella enterica, and Serratia marcescens and were killed 2, 6, 24, and 72 h after LPS injection. Whole blood samples were obtained and tissues, including lung, brain, liver, and spleen, were harvested for miRNA expression analysis using an miRNA array (Phalanx miRNA OneArrayR 1.0). Upregulated expression of miRNA targets in the whole blood of C57BL/6 and Tlr4?/? mice injected with LPS was quantified using real-time RT-PCR and compared with that in the whole blood of C57BL/6 mice injected with lipoteichoic acid (LTA) from Staphylococcus aureus. Following LPS injection, a significant increase of 15 miRNAs was observed in the whole blood. Among them, only 3 miRNAs showed up-regulated expression in the lung, but no miRNAs showed a high expression level in the other examined tissues. Upregulated expression of the miRNA targets (let-7d, miR-15b, miR-16, miR-25, miR-92a, miR-103, miR-107 and miR-451) following LPS injection on real-time RT-PCR was dose- and time-dependent. miRNA induction occurred after 2 h and persisted for at least 6 h. Exposure to LPS from different bacteria did not induce significantly different expression of these miRNA targets. Additionally, significantly lower expression levels of let-7d, miR-25, miR-92a, miR-103, and miR-107 were observed in whole blood of Tlr4?/? mice. In contrast, LTA exposure induced moderate expression of miR-451 but not of the other 7 miRNA targets. We identified a specific whole blood¡Vderived miRNA signature in mice exposed to LPS, but not to LTA, from different gram-negative bacteria. These whole blood-derived miRNAs are promising as biomarkers for LPS exposure.
   

 Environmental Science & Technology. 2012, 46(12):6822-9. doi: 10.1021/es3008547.
 Prenatal and Neonatal Exposure to Perfluorooctane Sulfonic Acid Results in Changes in miRNA Expression Profiles and Synapse Associated Proteins in Developing Rat Brains
 
 
 Faqi Wang, Wei Liu, Junsheng Ma, Mingxi Yu, Jiayin Dai, Yihe Jin
  Abstract
We previously identified a number of perfluorooctane sulfonic acid (PFOS)-responsive transcripts in developing rat brains using microarray analysis. However, the underlying mechanisms and functional consequences remain unclear. We hypothesized that microRNAs (miRNAs), which have emerged as powerful negative regulators of mRNA and protein levels, might be responsible for PFOS-induced mRNA changes and consequent neural dysfunctions. We used eight miRNA arrays to profile the expression of brain miRNAs in neonatal rats on postnatal days (PND) 1 and 7 with maternal treatment of 0 (Control) and 3.2 mg/kg of PFOS feed from gestational day 1 to PND 7, and subsequently examined six potentially altered synapse-associated proteins to evaluate presumptive PFOS-responsive functions. Twenty-four brain miRNAs on PND 1 and 17 on PND 7 were significantly altered with PFOS exposure (P < 0.05), with miR-466b, -672, and -297, which are critical in neurodevelopment and synapse transmission, showing a more than 5-fold reduction. Levels of three synapse-involved proteins, NGFR, TrkC, and VGLUT2, were significantly decreased with no protein up-regulated on PND 1 or 7. Perfluorooctane sulfonic acid might affect calcium actions during synapse transmission in the nervous system by interfering with SYNJ1, ITPR1, and CALM1 via their targeting miRNAs. Our results indicated that miRNA had little direct regulatory effect on the expression of mRNAs and synapse-associated proteins tested in the developing rat brain exposed to PFOS, and it seems that the PFOS-induced synaptic dysfunctions and changes in transcripts resulted from a combinatory action of biological controllers and processes, rather than directed by one single factor.
   

 Neuron. 2012, 73(4):774-88. doi: 10.1016/j.neuron.2012.02.003.
 EPAC Null Mutation Impairs Learning and Social Interactions via Aberrant Regulation of miR-124 and Zif268 Translation
 
 
 Ying Yang, Xiaogang Shu, Dan Liu, You Shang, Yan Wu, Lei Pei, Xin Xu, Qing Tian, Jian Zhang, Kun Qian, Ya-Xian Wang, Ronald S. Petralia, Weihong Tu, Ling-Qiang Zhu, Jian-Zhi Wang, Youming Lu
  Abstract
EPAC proteins are the guanine nucleotide exchange factors that act as the intracellular receptors for cyclic AMP. Two variants of EPAC genes including EPAC1 and EPAC2 are cloned and are widely expressed throughout the brain. But, their functions in the brain remain unknown. Here, we genetically delete EPAC1 (EPAC1(-/-)), EPAC2 (EPAC2(-/-)), or both EPAC1 and EPAC2 genes (EPAC(-/-)) in the forebrain of mice. We show that EPAC null mutation impairs long-term potentiation (LTP) and that this impairment is paralleled with the severe deficits in spatial learning and social interactions and is mediated in a direct manner by miR-124 transcription and Zif268 translation. Knockdown of miR-124 restores Zif268 and hence reverses all aspects of the EPAC(-/-) phenotypes, whereas expression of miR-124 or knockdown of Zif268 reproduces the effects of EPAC null mutation. Thus, EPAC proteins control miR-124 transcription in the brain for processing spatial learning and social interactions.
   

 Physiol Genomics. 2011, 43(9):488-98. doi: 10.1152/physiolgenomics.00248.2010.
 Effects of in vivo transfection with anti-miR-214 on gene expression in murine molar tooth germ
 
 
 Sehic A, Risnes S, Khuu C, Khan QE, Osmundsen H.
  Abstract
MicroRNAs (miRNAs) are an abundant class of noncoding RNAs that are believed to be important in many biological processes through regulation of gene expression. Little is known of their function in tooth morphogenesis and differentiation. MicroRNA-214 (miR-214), encoded by the polycistronic Dnm30os gene, is highly expressed during development of molar tooth germ and was selected as a target for silencing with anti-miR-214. Mandibular injection of 1-100 pmol of anti-miR-214 close to the developing first molar in newborn mice resulted in significant decrease in expression of miR-214, miR-466h, and miR-574-5p in the tooth germ. Furthermore, levels of miR-199a-3p, miR-199a-5p, miR-690, miR-720, and miR-1224 were significantly increased. Additionally, the expression of 863 genes was significantly increased and the expression of 305 genes was significantly decreased. Among the genes with increased expression was Twist-1 and Ezh2, suggested to regulate expression of miR-214. Microarray results were validated using real-time RT-PCR and Western blotting. Among genes with decreased expression were Amelx, Calb1, Enam, and Prnp; these changes also being reflected in levels of corresponding encoded proteins in the tooth germ. In the anti-miR-214-treated molars the enamel exhibited evidence of hypomineralization with remnants of organic material and reduced surface roughness after acid etching, possibly due to the transiently decreased expression of Amelx and Enam. In contrast, several genes encoding contractile proteins exhibited significantly increased expression. mRNAs involved in amelogenesis (Ambn, Amelx, Enam) were not found among targets of miRNAs that were differentially expressed following treatment with anti-miR-214. It is therefore suggested that effects of miR-214 on amelogenesis are indirect, perhaps mediated by the observed miR-214-dependent changes in levels of expression of numerous transcription factors.
   

 Molecular Cell. 2011, 41(4):371-83. doi: 10.1016/j.molcel.2011.01.020.
 The ATM Kinase Induces MicroRNA Biogenesis in the DNA Damage Response
 
 
 Xinna Zhang, Guohui Wan, Franklin G. Berger, Xiaoming He, Xiongbin Lu.
  Abstract
The DNA damage response involves a complex network of processes that detect and repair DNA damage. Here we show that miRNA biogenesis is globally induced upon DNA damage in an ATM-dependent manner. About one-fourth of miRNAs are significantly upregulated after DNA damage, while loss of ATM abolishes their induction. KH-type splicing regulatory protein (KSRP) is a key player that translates DNA damage signaling to miRNA biogenesis. The ATM kinase directly binds to and phosphorylates KSRP, leading to enhanced interaction between KSRP and pri-miRNAs and increased KSRP activity in miRNA processing. Mutations of the ATM phosphorylation sites of KSRP impaired its activity in regulating miRNAs. These findings reveal a mechanism by which DNA damage signaling is linked to miRNA biogenesis.