Cardiovascular Research
论文引用华联产品
华联产品: Human OneArray

Identification of differentially expressed genes in myocardium of patients with heart failure by human whole genomic oligonucleotide microarray-assisted pathways analysis.

Zhonghua Xin Xue Guan Bing Za Zhi 2009, 37(2):120-125
Abstract
To identify the differentially expressed gene profiles in myocardium of patients with heart failure using human whole genomic oligonucleotide microarray-assisted pathway analysis. Phalanx whole genomic oligonucleotide microarrays were used to detect the gene expression profiles of myocardium in four patients died of heart failure and 4 brain died patients without heart diseases. The microarray findings were confirmed by real-time quantitative reverse transcriptase-polymerase chain reaction. The genes with a threshold of 1.2 times fold-change were selected and BioCarta Pathway and KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathway databases were used to identify functionallyrelated gene pathways. A total of 2806 genes with differentially expression were detected between the failing and non-failing heart samples,expression changes of 399 genes were more than 2-folds. Eleven pathways were identified by BioCarta pathway database and sixteen pathways were identified by KEGG PATHWAY Database. Genomic microarray-assisted pathway analysis could help to identify gene expression profiles in failing heart.
华联产品: Mouse OneArray

Characterization of Gaucher disease bone marrow mesenchymal stromal cells reveals an altered in?ammatory secretome.

BLOOD 2009, 114(15):3181-90. doi: 10.1182/blood-2009-02-205708
Abstract
Gaucher disease causes pathologic skeletal changes that are not fully explained. Considering the important role of mesenchymal stromal cells (MSCs) in bone structural development and maintenance, we analyzed the cellular biochemistry of MSCs from an adult patient with Gaucher disease type 1 (N370S/L444P mutations). Gaucher MSCs possessed a low glucocerebrosidase activity and consequently had a 3-fold increase in cellular glucosylceramide. Gaucher MSCs have a typical MSC marker phenotype, normal osteocytic and adipocytic differentiation, growth, exogenous lactosylceramide trafficking, cholesterol content, lysosomal morphology, and total lysosomal content, and a marked increase in COX-2, prostaglandin E2, interleukin-8, and CCL2 production compared with normal controls. Transcriptome analysis on normal MSCs treated with the glucocerebrosidase inhibitor conduritol B epoxide showed an up-regulation of an array of inflammatory mediators, including CCL2, and other differentially regulated pathways. These cells also showed a decrease in sphingosine-1-phosphate. In conclusion, Gaucher disease MSCs display an altered secretome that could contribute to skeletal disease and immune disease manifestations in a manner distinct and additive to Gaucher macrophages themselves.
华联产品: Human OneArray

A neural network model for constructing endophenotypes of common complex diseases: an application to male young-onset hypertension microarray data.

BIOINFORMATICS 2009, 25(8):981-8. doi: 10.1093/bioinformatics/btp106
Abstract
Identification of disease-related genes using high-throughput microarray data is more difficult for complex diseases as compared with monogenic ones. We hypothesized that an endophenotype derived from transcriptional data is associated with a set of genes corresponding to a pathway cluster. We assumed that a complex disease is associated with multiple endophenotypes and can be induced by their up/downregulated gene expression patterns. Thus, a neural network model was adopted to simulate the gene-endophenotype-disease relationship in which endophenotypes were represented by hidden nodes. RESULTS: We successfully constructed a three-endophenotype model for Taiwanese hypertensive males with high identification accuracy. Of the three endophenotypes, one is strongly protective, another is weakly protective and the third is highly correlated with developing young-onset male hypertension. Sixteen of the involved 101 genes were highly and consistently influential to the endophenotypes. Identification of SLC4A5, SLC5A10 and LDOC1 indicated that sodium/bicarbonate transport, sodium/glucose transport and cell-proliferation regulation may play important upstream roles and identification of BNIP1, APOBEC3F and LDOC1 suggested that apoptosis, innate immune response and cell-proliferation regulation may play important downstream roles in hypertension. The involved genes not only provide insights into the mechanism of hypertension but should also be considered in future gene mapping endeavors.
华联产品: Human OneArray

Clinical manifestation and molecular genetic characterization of MYH9 disorders.

Platelets 2009, 20(5):289-96. doi: 10.1080/09537100902993022
Abstract
Currently, the May-Hegglin anomaly (MHA), Sebastian (SBS), Fechtner (FTNS) and Epstein (EPS) syndrome are considered to be distinct clinical manifestations of a single disease caused by mutations of the MYH9 gene encoding the heavy chain of non-muscle myosin IIA (NMMHC-IIA). Manifestations of these disorders include giant platelets, thrombocytopenia and combinations of the presence of granulocyte inclusions, deafness, cataracts and renal failure. We examined 15 patients from 10 unrelated families on whom we performed immunostaining of NMMHC-IIA in blood samples. Polymerase chain reaction (PCR) analysis of selected exons of the MYH9 gene revealed mutations in nine samples with one novel mutation. Results of fluorescence and mutational analysis were compared with clinical manifestations of the MYH9 disorder. We also determined the number of glycoprotein sites on the surface of platelets. Most patients had an increased number of glycoproteins, which could be due to platelet size.
联络我们